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Abstract

This paper deals with the transverse vibration of an initially stressed moving viscoelastic string obeying a
fractional differentiation constitutive law. The governing equation is derived from Newtonian second law
of motion, and reduced to a set of non-linear differential–integral equations based on Galerkin’s
truncation. A numerical approach is proposed to solve numerically the differential–integral equation
through developing an approximate expression of the fractional derivatives involved. Some numerical
examples are presented to highlight the effects of viscoelastic parameters and frequencies of parametric
excitations on the transient responses of the axially moving string.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Axially moving strings can represent many engineering devices such as power transmission
belts, plastic films, magnetic tapes, paper sheets, and textile fibers. Much research has been done
to study transverse vibrations of such systems, which has been reviewed by Wickert and Mote [1]
and Chen and Zu [2]. One major problem is the occurrence of large transverse vibrations due to
tension or axial speed variation termed as parametric vibrations.
As viscoelastic damping is becoming widely applied for vibration and noise suppression in various

industries, there are several papers dealing with transverse parametric vibrations of axially moving
viscoelastic strings. Fung et al. [3] studied the transient motion of an axially moving viscoelastic string
constituted by the Boltzmann superposition principle. They applied the Galerkin truncation based on
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the basis of stationary string eigenfunctions to obtain a set of ordinary differential–integral equations,
and then used the finite difference integration to calculate approximately the related integrals to
transform the ordinary differential–integral equations into the ordinary differential equations. Fung
et al. [4] used the Galerkin method to study numerically the case that the standard linear solid model
constitutes the accelerating string. Zhang and Zu [5,6] presented closed-form solutions for the
amplitude and the existence conditions of non-trivial solutions of the summation resonance of the
axially moving viscoelastic string described by the Kelvin model, and determined the stability of
the trivial solution and the non-trivial solutions. Investigating the same problem in Ref. [3], Zhang and
Zu [7] used the 1-term Galerkin method to discretize the governing equation based on the translating
eigenfunctions instead of stationary eigenfunctions. Zhao and Chen [8] developed a numerical
algorithm to simulate the non-linear parametric vibration of an axially moving viscoelastic string
constituted by the standard linear solid model or theMaxwell model. They used the finite difference to
discrete spatial variables, and deduced a model defined by a large set of differential–algebraic
equations. Chen and Zu [9] and Chen et al. [10] studied analytically parametric vibration at the
principal resonance and the summation resonance, respectively, of the axially moving viscoelastic
string constituted by the Boltzmann superposition principle. Chen et al. [11,12] investigated
bifurcation and chaos in transverse motion of an axially moving viscoelastic string based on 2- and
4-term Galerkin truncations, respectively.
All available studies [3–12] are concentrated on axially moving strings constituted by the

differential relationships such as the Kelvin model [5,6,11,12], the Maxwell model [8] and the
standard linear solid model [4,8] and the integral relationship, the Boltzmann superposition
principle [3,7,9,10]. In fact, in Refs. [3,7,9,10] all used the exponential function as the relaxed
function in the integral constitution law. For certain viscoelastic materials such as synthetic rubber
and synthetic fiber, the relaxed function of the Abelian type with a weak singularity describes the
features of viscoelasticity more appropriately [13]. Therefore, the fractional differentiation law, a
integral relationship with a weakly singular kernel, is used to constitute those materials. Although
many vibration and wave problems were investigated for the continua constituted by the fractional
differentiation [14], the literature that is specially related to axially moving strings is very limited. To
address the lack of research in this aspect, this paper studies the transient responses of an axially
accelerating viscoelastic string constituted by a fractional differentiation law.
This paper adopts the fractional differentiation relationship to constitute the axially moving

string. The governing equation of transverse vibration is derived from Newton’s second law.
Lagrangian strain is employed to account non-linearity due to finite stretching. Galerkin’s method
is applied to truncate the governing equation, a non-linear partial-differential–integral equation,
into a set of differential–integral equations. Based on approximate calculations of the fractional
derivatives concerned, a numerical approach is developed to solve those differential–integral
equations. The numerical approach is used to analyze the effects of viscoelastic parameters on the
transient responses of axially moving strings.

2. Problem formulations

Consider a uniform, flexible, axially moving viscoelastic string of density r; area of cross-
section A; initial tension P; and uniform transport speed c that travels between two fixed ends
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separated by distance L: The speed c is not constant, but a prescribed function of time T : Several
simplifying assumptions are made as follows: (1) only transverse motion in the y direction is taken
into consideration; (2) Lagrangian strain for string is employed as a finite measure of the strain;
(3) the viscoelastic string is in a state of uniform initial stress, and the initial tension is rather large;
(4) only geometric non-linearity due to finite stretching is considered through Lagrangian strain.
Based on the above assumptions, the equation of motion in the transverse direction can be

derived from Newton’s second law

rA
@2UðX ;TÞ

@T2
þ 2c

@2UðX ;TÞ
@X@T

þ
dc

dT

@UðX ;TÞ
@X

þ c2
@2UðX ;TÞ

@X 2

� �

¼ P
@2UðX ;TÞ

@X 2
þ

@

@X
AsðX ;TÞ

@UðX ;TÞ
@X

� �
; ð1Þ

where UðX ;TÞ is the displacement in the transverse direction, X is the spatial Cartesian co-
ordinate in the axial direction and sðX ;TÞ is the perturbed stress. The transverse acceleration is
compounded by the relative acceleration, the Coriolis acceleration, and the convected
acceleration.
A fractional differentiation constitutive law is chosen to describe the viscoelastic property of

the string material. Experiments demonstrated that it is a good model for many materials
such as synthetic rubbers and synthetic fibers [13]. For such materials, the stress–strain
relation is

sðX ;TÞ ¼ E0eLðX ;TÞ þ Z0D
a
T ðeLðX ;TÞÞ ð0oao1Þ; ð2Þ

where sðX ;TÞ is the perturbed strain in the axial direction, eLðX ;TÞ is the perturbed Lagrangian
strain component, E0 is the stiffness constant of the string, Z0 is the dynamic viscosity and
the Riemann–Liouville a order fractional differentiation operator with respect to T is defined
by [15]

Da
T ðf Þ ¼

1

Gð1� aÞ
d

dT

Z T

0

f ðtÞ dt
ðT � tÞa

ð3Þ

in which G is the Gamma function. For strings with finite amplitude, the perturbed Lagrangian
strain component in the axial direction related to the transverse displacement is given by

eLðX ;TÞ ¼
1

2

@UðX ;TÞ
@X

� �2

: ð4Þ

Substituting Eqs. (2)–(4) into Eq. (1) leads to the governing equation of transverse vibration of
the string:
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þ 2rc
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The boundary conditions are assumed to be homogeneous

Uð0;TÞ ¼ UðL;TÞ ¼ 0: ð6Þ

To model the parametric vibration experimentally observed, some researchers introduced the
initial tension as a parametric excitation [3–12]. Following their practices, this paper assumes that
the initial tension PðtÞ is characterized as a small periodic perturbation P1 cosðOtÞ superimposed
on the steady state tension P0; i.e. P ¼ P0 þ P1 cosðOtÞ; which is the same as that in previous
researches.
For the convenience of analysis, introduce the following non-dimensional variables and

parameters:

u ¼
U

L
; x ¼

X

L
; t ¼

T

L

ffiffiffiffiffiffiffi
P0

rA

s
; g ¼ c

rA

P0
; o ¼ OL

ffiffiffiffiffiffiffi
rA

P0

s
;

v ¼
P1

P0
; Z ¼

Z0
La

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

rA

� �a
s

; e0 ¼
A

P0
E0: ð7Þ

Then one obtains the non-dimensional governing equations of transverse motion

Lu ¼ 0; ð8Þ

where

Lu ¼
@2uðx; tÞ

@t2
þ 2g

@2uðx; tÞ
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þ ðg2 � 1� v cosðotÞÞ
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@x2
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Da
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 !
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@x2

� Z
@uðx; tÞ
@x

Da
t

@uðx; tÞ
@x

@2uðx; tÞ
@x2

� �
: ð9Þ

The boundary conditions in non-dimensional form are

uð0; tÞ ¼ uð1; tÞ ¼ 0: ð10Þ

3. Method of solution

Eq. (8) is a non-linear partial differential–integral equation. It is impossible to get its exact
analytical solution. To obtain its numerical solution, the Galerkin method is applied to discretize
the spatial variable. Under the homogenous boundary condition (6), the solution of Eq. (8) can be
expanded into the following trial function:

uðx; tÞ ¼
XN
n¼1

jnðtÞ sinðnpxÞ; ð11Þ
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where the jnðtÞ are generalized displacements, and sinðnpxÞ is the nth eigenfunction of the simply
supported stationary string. Define the inner product

/f ; gS ¼
Z 1

0

f ðxÞgðxÞ dx: ð12Þ

If one chooses also the stationary string eigenfunctions as the weighting functions cmðxÞ

cmðxÞ ¼ sinðmpxÞ: ð13Þ

The Galerkin method implies that the generalized displacements jnðtÞ can be obtained by solving
the following ordinary differential–integral equation system:

/Lu;cmS ¼ 0 ðm ¼ 1; 2;yÞ: ð14Þ

Inserting Eqs. (11) and (13) into Eq. (14) and calculating the resulting inner products defined by
Eq. (12), one gets the explicit form of Eq. (14):

.jm þ 4g
X
jam

bmj ’jj � m2p2ðg2 � 1� v cosðotÞÞjm þ 2’g
X
jam

bmjjj

¼ 3e0
XN
i¼1

XN
j¼1

XN
l¼1

dmijljijjjl

þ Z
XN
i¼1

XN
j¼1

XN
l¼1

ðdmijl þ 2dmiljÞjlD
a
t ðjijjÞ; ðm ¼ 1; 2;yÞ; ð15Þ

where

bml ¼
mlð1� cosðmpÞ cosðlpÞÞ

m2 � n2
; mal;

0; m ¼ l;

8<
: dmijl ¼

1
8

ijl2p4; m ¼ l7i7j;

� 1
8

ijl2p4; m ¼ i7j � l or j � i � l;

0 all other cases:

8><
>: ð16Þ

To transform the differential–integral equations (15) into a set of ordinary differential equation,
one has to deal with the terms Da

t ðjijjÞ included in Eq. (15). Integrating by parts, one can rewrite
the fractional derivative terms as

Da
t ðjijjÞ ¼

1

Gð1� aÞ

Z t

0

ðjijjÞ
0ðt � tÞ

ta
dtþ

jið0Þjjð0Þ

Gð1� aÞta
: ð17Þ

Consider a subinterval ½tk; tkþ1�C½0; 1�: For tkotptkþ1; the central difference approximation leads
to Z t

0

ðjijjÞ
0ðt � tÞ

ta
dt ¼

Xk�1

s¼0

Z tsþ1

ts

ðjijjÞ
0ðt � tÞ

ta
dtþ

Z t

tk

ðjijjÞ
0ðt � tÞ

ta
dt

¼
Xk�1

s¼0

ðjijjÞ½tk�s�1; tk�s�As þ
Z t

tk

ðjijjÞ
0ðt � tÞ

ta
dtþ Oðkh3 þ h3�aÞ;

ð18Þ
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where

ðjijjÞ½tk�s�1; tk�s� ¼
jiðtk�s�1Þjjðtk�s�1Þ � jiðtk�sÞjjðtk�sÞ

tk�s�1 � tk�s

;

As ¼
Z tsþ1

ts

t�a dt ¼
t1�a
sþ1 � t1�a

s

1� a
; h ¼ max

k
ðtkþ1 � tkÞ: ð19Þ

Denote

hkðtÞ ¼
Z t

tk

ðjijjÞ
0ðt � tÞ

ta
dt: ð20Þ

Then hkðtkÞ ¼ 0: The Taylor series expansion at t ¼ tk yields

hkðtÞ ¼
ðjijjÞ

0ð0Þ

tak
ðt � tkÞ þ Oðh2Þ: ð21Þ

Substituting of Eqs. (18) and (21) into Eq. (17) and dropping the higher order terms, and then
inserting the resulting equation into Eq. (15) give

.jm þ 4g
X
jam

bmj ’jj � m2p2ðg2 � 1� v cosðotÞÞjm þ 2’g
X
jam

bmjjj

¼ 3e0
XN
i¼1

XN
j¼1

XN
l¼1

dmijljijjjl þ
Z

Gð1� aÞ

XN
i¼1

XN
j¼1

XN
l¼1

ðdmijl þ 2dmiljÞjl

jijjð0Þ

ta



þðjijjÞ
0ð0Þ

t � tk

tak
�
Xk�1

s¼0

AsðjijjÞ½tk�s�1; tk�s�

)

ðm ¼ 1; 2;y; tkotptkþ1; k ¼ 0; 1; 2;yÞ: ð22Þ

Although the difference quotient terms ðjijjÞ½tk�s�1; tk�s� make Eq. (22) not a usual set of
ordinary differential equations, the convenient numerical solution methods, such as the fourth
order Runge–Kutta routine, can be applied for given initial conditions providing that tk�s�1 �
tk�s is treated as an integration step.
If the initial values of Eq. (8) are given as

uðx; 0Þ ¼ aðxÞ;
@uðx; 0Þ

@t
¼ bðxÞ; ð23Þ

then the initial values of Eq. (22) are

jmð0Þ ¼
ffiffiffi
2

p Z 1

0

f ðxÞ sinðmpxÞ dx; ’jmð0Þ ¼
ffiffiffi
2

p Z 1

0

f1ðxÞ sinðmpxÞ dx ðm ¼ 1; 2;yÞ: ð24Þ

4. Numerical results and discussions

In this section, a few numerical examples are presented to demonstrate the effects of related
parameters on transient responses of transverse vibration of the axially moving viscoelastic string.
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In all cases, the initial conditions of Eq. (8) are prescribed as

uðx; 0Þ ¼ 0:1xð1:0� xÞ;
@uðx; 0Þ

@t
¼ 0: ð25Þ

Some researches [3,4,7] assumed that the transport speed is characterized as a small simple
harmonic variation about the constant mean speed, i.e.

gðtÞ ¼ g0 þ g1 cosðo0tÞ: ð26Þ

The assumption has its physical meaning. For example, if the axially moving string models a belt
on a pair of rotating pulleys, the rotation vibration of the pulleys will result in a small fluctuation
in the axial speed of the belt. Thus the authors adopt the assumption and consider the axial speed
given by Eq. (26).
First of all, the authors try to find how many terms in Eq. (11) are needed to be obtained

plausible results. To do this, we compare the transient responses numerically calculated form the
1-, 2-, 3- and 4-term Galerkin truncation. Substitution of Eq. (25) into Eq. (24) yields the initial
conditions of the truncated systems as

j1ð0Þ ¼

ffiffiffi
2

p
5p3

; j2ð0Þ ¼ 0; j3ð0Þ ¼

ffiffiffi
2

p
35p3

; j4ð0Þ ¼ 0; ’jið0Þ ¼ 0 ði ¼ 1; 2; 3; 4Þ: ð27Þ

The time histories of the center displacement of the string with a constant speed and tension or a
varying speed and tension are, respectively, illustrated in Figs. 1 and 2, in which the parameters
are, respectively, chosen as

e0 ¼ 0:1; a ¼ 0:5; Z ¼ 0:1; g0 ¼ 0:5; g1 ¼ 0; v ¼ 0; ð28Þ

e0 ¼ 10; a ¼ 0:5; Z ¼ 2:0; g0 ¼ 0:8; g1 ¼ 0:1; o0 ¼ 0:2;

v ¼ 0:2; o ¼ 1:0: ð29Þ

In both Figs. 1 and 2, the time histories obtained from 1-, 2-, 3- and 4-term Galerkin truncated
systems are, respectively, represented by dotted, dash–dot, dashed and solid lines. The results
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indicate that the difference between the dashed lines and the solid lines are rather small.
Therefore, it is inferred that the 4-term Galerkin truncation yields good enough approximation. In
the following calculations, the 4-term Galerkin truncation will be used.
Now we analyze numerically the effects of viscoelastic power parameter a and viscoelastic

coefficient Z; in their non-dimensional forms, on the transient responses of the center of the axially
moving strings. Fig. 3 shows the time histories of the center displacements for parameter a at the
different values 0.1 (solid line), 0.5 (dashed–dot line) and 0.9 (dashed line), while other parameters
are fixed as

e0 ¼ 10; Z ¼ 50; g0 ¼ 0:5; g1 ¼ 0:1; o0 ¼ 0:4; v ¼ 0:2; o ¼ 1:0: ð30Þ

Fig. 4 shows the time histories of the center displacements for different values of parameter Z at
the different values 5 (solid line), 25 (dash–dot line) and 50 (dashed line), while other parameters
are fixed as

e0 ¼ 10; Z ¼ 0:1; g0 ¼ 0:5; g1 ¼ 0:1; o0 ¼ 0:4; v ¼ 0:2; o ¼ 1:0: ð31Þ

In both cases, the larger viscoelastic parameters result in the smaller amplitudes of the transient
responses, which is physically sound since the larger viscoelasticity causes more energy
dissipation. Besides, Fig. 4 indicates that the periods of the transient responses decrease with
the increase of viscoelastic coefficient Z; but, in Fig. 3, viscoelastic power parameter a has no
significant effect on the periods.
Finally, we study numerically the effects of frequencies of parametric excitations on the

transient responses of the center of the axially moving strings. In the present investigation, the
parametric excitations are modeled as harmonic variations of the tension and the axial speed.
Time histories of the center displacements are depicted in Fig. 5 for varying frequencies of axial
speed fluctuation o0 ¼ 0:4; 1:6; 2:8; represented, respectively, by the solid, dash–dot, and dashed
lines, in which all other parameters are chosen as

e0 ¼ 10; Z ¼ 50; a ¼ 0:1; g0 ¼ 0:5; g1 ¼ 0:1; v ¼ 0:2; o ¼ 1:0: ð32Þ
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Time histories of the center displacements are depicted in Fig. 6 for varying frequencies of tension
fluctuation o ¼ 0:4; 1:6; 2:8; represented, respectively, by the solid, dash–dot, and dashed lines, in
which all other parameters are chosen as

e0 ¼ 10; Z ¼ 50; a ¼ 0:1; g0 ¼ 0:5; g1 ¼ 0:1; o0 ¼ 1:6; v ¼ 0:2: ð33Þ

Numerical results indicate that the frequencies of parametric excitations influence both the
amplitudes and the periods of the transient responses. Fig. 6 also indicates that instability may
occur for a certain set of parameters, which is the dramatic difference between the free vibration
and the parametric vibration. In the case that both the axial speed and the initial tension are
constant, due to the damping of the viscoelasticity, the free vibration of the string will die out as
shown in Fig. 1. Contrastively, the amplitude of the parametric vibration of the string, resulted
from the time-varying axial speed or tension, may increase with the time. Fung et al. [3] first found
the unstable phenomenon in the parametric vibration of a viscoelastic moving string constituted
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by the Boltzmann superposition principle. Present investigation also found such instability in the
parametrically excited viscoelastic string constituted by the fractional differentiation constitutive
law.

5. Conclusions

This paper treats the transient transverse response of a moving viscoelastic string constituted by
a fractional differentiation relationship. Lagrangian strain is used to account geometric non-
linearity due to the finite deflection of the string. The governing equation is derived from
Newtonian second law of motion, and reduced to a set of non-linear differential–integral
equations based on Galerkin’s truncation. A numerical approach is proposed to solve numerically
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the differential–integral equation through developing an approximate expression of the fractional
derivatives involved. Some numerical examples are presented to demonstrate the effects of
viscoelastic parameters and frequencies of parametric excitations on the transient responses of the
axially moving string. Numerical results indicate that the amplitudes of transient responses
decrease with the increase of both the viscoelastic power parameter and the viscoelastic
coefficient, while the periods of transient response decrease only with the increase of the
viscoelastic coefficient. In addition, numerical results indicate that transverse vibrations may
become unstable when the frequencies of parametric excitations change.
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